

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary and secondary circuits. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

Electrical Data/Input

Part number	Primary Rated Current I _r (A)	Measuring Range $I_p(A)$	Turns ratio	Internal measuring resistor (Ω)
CYHCS-ES5A-10A	10	± 30	1:1000	62.5±0.1%
CYHCS-ES5A-25A	25	± 75	1:2000	50±0.1%
CYHCS-ES5A-50A	50	± 150	1:2000	25±0.1%

+2.5V±0.625V ±0.5%FS Rated Output Voltage: Supply Voltage $+5V \pm 5\%$. Reference voltage R: +2.5VDC ±0.5% FS Electric Offset Voltage +2.5VDC ±0.5% FS Current Consumption (at V_{out}=0V) <20mA Isolation voltage (50/60Hz, 1min) 3.0kV Accuracy: 0.5% FS Linearity: <0.1% FS Thermal Drift of Offset Voltage, ±0.4mV/°C < 1.0µs Response Time: Di/dt following accuracy: 100A/µs Frequency Bandwidth (-1dB): DC ~ 200 kHz

General Data

Ambient Operating Temperature: $-25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature: $-40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Relation between Input Current and Output Voltage

Take the sensor CYHCS-ES5A-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table1. Relation between the input current and output voltage

Input current (A)	-75	-50	-25	-12.5	0	12.5	25	50	75
Output voltage (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

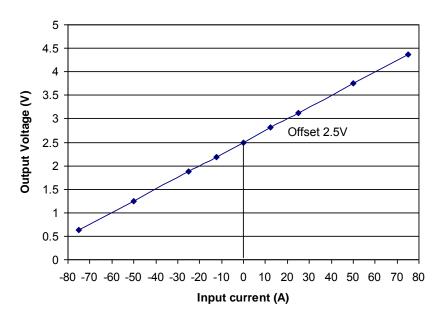


Fig. 1 Relation between the input current (DC) and output voltage (DC)

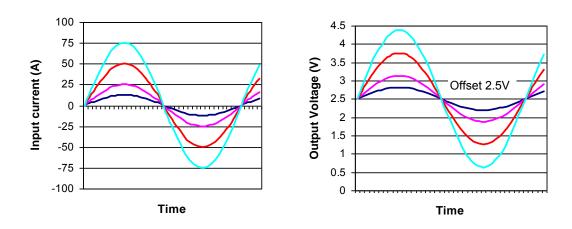


Fig. 2 Relation between the input current (AC) and output voltage (AC)

Dimensions (mm)

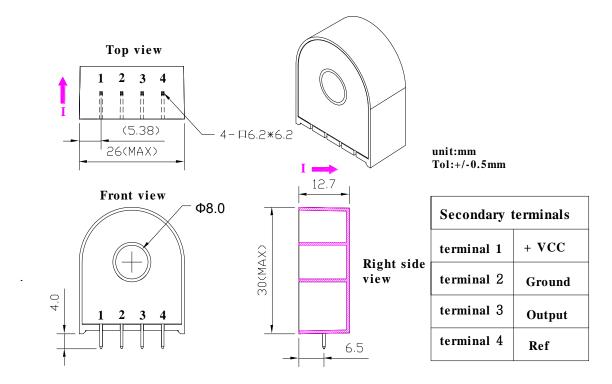


Fig. 3 Dimensions of CYHCS-ES5A

Connection

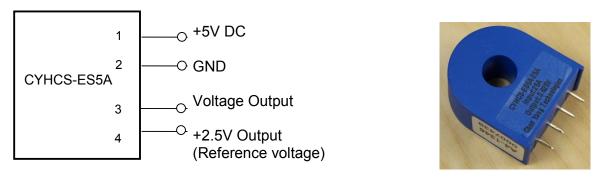


Fig. 4 Connection of CYHCS-ES5A

Operating instructions

- 1. Connect the pins of power source, outputs respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

CYHCS-ES5A Current Sensor

For more information and certifications, please contact:

Panel Components & Systems, Inc. ■ Phone: (800) 523-9194 ■ info@pc-s.com

Main Office:

Stanhope, NJ

Phone: (973) 448-9400