

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary and secondary circuits. It can be used for measurement of AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring	

Electrical Data

Primary Nominal	Measuring	DC Output	Aperture	Part number
RMS Current I_r (A)	Range (A)	Current (mA)	Diameter (mm)	
50	0 ~ 100			CYHCS-EKBDA-50A-nC
100	0 ~ 200			CYHCS-EKBDA-100A-nC
200	0 ~ 400			CYHCS-EKBDA-200A-nC
500	0 ~ 1000	4-20 ±1.0%	Ø40.5	CYHCS-EKBDA-500A-nC
800	0 ~ 1600	4-20 ±1.0 /6	Ø40.5	CYHCS-EKBDA-800A-nC
1000	0 ~ 2000			CYHCS-EKBDA-1000A-nC
1500	0 ~ 3000			CYHCS-EKBDA-1500A-nC
2000	0 ~ 3000			CYHCS-EKBDA-2000A-nC

(n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage V_{cc} =+12V, +15V, +24V ± 5%

Current Consumption $I_c < 25 \text{mA}$

Galvanic isolation, 50/60Hz, 1min: 5kV

Isolation resistance @ 500 VDC $> 500 M\Omega$

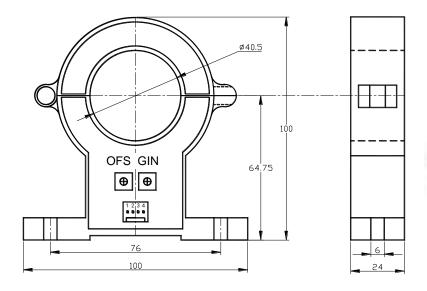
Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, X < 1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, *E*_L <1.0% FS

Electric Offset Current, T_A =25°C, 4mA

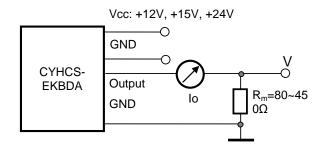
Thermal Drift of Offset Current, $V_{ot} < \pm 0.005 \text{mA/°C}$

Response Time at 90% of I_P (f=1k Hz) $t_r < 20 \text{ms}$ Frequency bandwidth (- 3 dB): 20Hz - 20kHz Load resistance: $80-450\Omega$


CYHCS-EKBDA Current Sensor

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

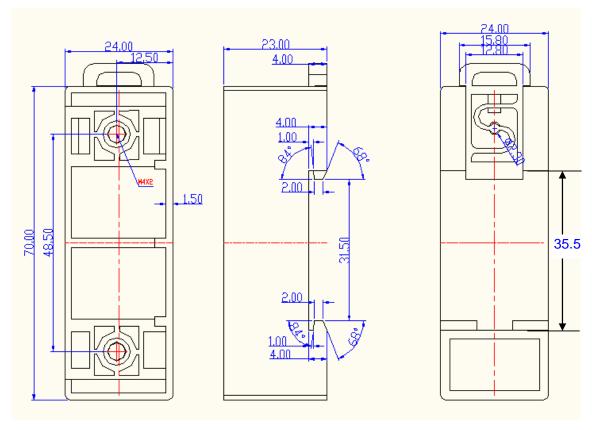

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

1(+): Vcc 2(G): NC (GND) 3(O): Output 4(G): GND

Notes:


- Connect the terminals of power source, outputs respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

.

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom and the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom and the middle of hole is 54.8mm)

For more information and certifications, please contact:

Panel Components & Systems, Inc. ■ Phone: (800) 523-9194 ■ info@pc-s.com

Main Office:

Stanhope, NJ

Phone: (973) 448-9400